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Dipolar and contact processes in H2 0-p  conversion on ionic 
surfaces 

K Makoshit, M Rami and E Ilisca 
Lahatoire de Magnetisme des Surfaces, Universit6 Paris 7,2 place Jussieu, 75251 Paris 
G d e x  05, France 

Received 10 May 1993, in final form 14 July 1993 

Abstract Different channels in the orrho-pru conversion of hydrogen molecules physisorkd 
on a transition metal oxide surface are investigated. The Wigner process, which assumes 
catalysts to be point dipoles. is analysed and compared lo the dipolar and contact processes. 
which include the orbital degrees of freedom of the surface electrons. Three possibte ground 
states, corresponding to different surface structures, are considered and heir relative emciencies 
discussed. In particular, h e  a-p conversion rate is found to be very sensitive to the presenoe 
of a metal dangling bond perpendicuh to the surface. The molecubmetal electron overlap is 
shown to sbengthen the contact process considerably but the dipolar one only negligibly. Our 
general expressions are illustrated by a simple model, mrresponding qualitatively lo chromium 
impurities dispersed on an alumina surface and discussed in t m  of two parameters: the 
surfa~~-molecuC distance d ,  and the effective metal nuclear charge 2. A fluctuation of abouf 
100% in the U-p conversion rates, when compared to the original Wgner theory, is found. 

This paper deals with the theoretical analysis of some elementary (one-step) channels of the 
orrho-para conversion of hydrogen moIecules physisorbed on a transition metal oxide. 

All the past experimental studies of a-p Hz conversion on magnetic surfaces have been 
analysed in terms of the Wigner model, originally derived in 1933 [1J+ Astonishingly, 
the underlying assumptions of this model, essentially catalyst magnetic point dipoles, have 
never been discussed. The numerous discrepancies between the experimental measurements 
of the o-p Hz conversion rate on ionic surfaces and the Wigner theoretica1 model have been 
recently reviewed 121. As the expenmend rates can exceed the theoretical ones by more 
than an order of magnitude [3,4], we found it necessary to examine properly the usual 
assumption of catalyst magnetic point dipoles, 

We investigate, in this paper, a few elementary 'one-step' channels: the dipolar D and 
contact Y ones, in which we take explicitly into account the orbital degrees of freedom of 
the surface electrons. For each channel, three levels of analysis of decreasing generality 
are proposed. (a) The conversion algebra, based on group theory, allows us to express the 
conversion rates in terms of orbital tensors, functions of the surface electron configuration. 
(b) These tensors are expressed in terms of surface orbitals and iIlustrated by considering 
three 3d electrons of metal cations corresponding qualitatively to chromium impurities 
diluted at the surface of an alumina substrate. The extension of the formalism to an arbitrary 
number of orbitals is straightforward. (c) In order to obtain qualitative estimates in terms of 

t Permanent address: Faculty of Engineering Science, Osaks University, Toyonaka, Osaka 560. Japan. 
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7326 K Mabshi et a1 

a reduced number of parameters, a simple hydrogenoid form for the radial 36 wavefunction 
is inserted in the general expressions. This allows analytical expressions of the matrix 
elements and numerical estimates in terms of only two parameters: d ,  the Cr-molecule 
distance and 2, the effective ionic charge of Cr. 

At low temperature, the Hz molecule is assumed to be adsorbed at a distance d from 
the C?+ ion on the symmetry axis perpendicular to the surface lattice plane. On pure 
alumina, the H2 molecule was found to be adsorbed on the top of an interstitial aluminium 
ion or vacancy, at a distance d = 2.4 A 21 4.54 a.u. above the oxygen plane and rather 
insensitive to the presence or absence of an A13+ interstitial ion [5 ] .  The surface 'cluster' 
is assumed to be of C4v symmetry. A simple geometry could be the bipyramid Hz-MOs, 
where the C?* ion M = C?* (3d3) is surrounded by five oxygen ions at equal distances and 
on the three axes, with the HZ on the top, Larger clusters of different symmetries are also 
possible, but there is great advantage in using the basis functions (6 ,  q), <, U and U of the 
representations e, b2, a1 and bi of the CdV group. The same basis functions span the cubic 
group. These are the usual combinations of the 3d radial part and harmonic orientations. 
(Calculations on lower, or higher, symmetries can be derived from this basis.) We then 
include. the inter-electron Coulomb interaction by constructing the triple products which are 
irreducible representations of CdV. The new three-electron 3d basis functions are obtained 
as linear combinations of (3 x 3) Slater determinants, constructed from the original spin 
orbitals 6 ,  q ,  , . . , and eigenfunctions of S2 and S, where S represents the total electron 
spin momentum [6]. The quadruplets are known to lie lower than the doublets, because 
of exchange interaction, and we restrict our considerations to the former. For the MO5 
geometry, the quadruplet (e2b2)4Bl is most certainly the ground state since it cumulates 
all the advantages of strong exchange, E bonding with the 0 ions and high crystal-field 
splittings. However, when the 0 ion beIow the metal one is missing, we obtain the MO4 
geometry where the axial orbid U = d,z of representation at becomes a dangling bond 
competitive with the others. In this case (ale2I4Az, and (a~eb?)~E with orbital degeneracy, 
are equaliy possible candidates. Our purpose is to express the different conversion rates 
in terms of the orbital basis (e, 9 ,  U, . . .) and illustrate their sensitivities to different inter- 
electron couplings identified by their symbols 'r = 4 B ~ ,  'A*, 4E. (Appendix A Iists a few 
of their eigenfunctions.) 

The molecule's nuclear system is composed of the rotational system, of eigenstates Yk 
and eigenenergies E L  = $wOPL(f, + I ) ,  and the spin system. Defining the nuclear spins 
3(a) and Z(b) at h e  protons a and b, the total momentum 1 = I(a) + I(b) has the eigenvalue 
zero in the para states and one in the ortho srates. Due to Pauli antisymmetrization they 
are associated with the even and odd rotational states respectively. However we shall 
only retain in the following the first U-p transition connecting the para state defined by 
j p }  = IL = I = O), together with the first ortho one, defined by loi/) = IL = I = 1, m f ,  mi), 
since this is the preponderent one at low temperatures. Moreover, at higher temperatures, 
the other 0 - p  transitions, A L  odd, can be expressed in tems of it by multiplying by a 
temperature dependent factor. 

The o-p transition rate, inside the manifold 2st I r, is obtained from time dependent 
perturbation theory as 

where y ,  m and y' ,  m' define the initial and final electron orbital and spin substates 
respectively with initial probability occupation py ,m = p v p m  = [2S+1r]-', since we neglect 
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spin-orbit splittings ([ ] denotes the state degeneracy). JIw,,) represents the spectral density 
of molecular motion at the + p  frequency mop = 3.54 x 10I2 s-l. Different models have 
been suggested to describe J ( o o p ) ,  owing to the catalyst substrate and the conditions of 
pressure and temperature at the surface [7,81. 

The hypefine Hamiltonian H couples the electron and nuclear degrees of freedom. 
The physical picture is that the inhomogeneous magnetic field, arising from the surface 
electronic spins, uncouples the molecule nuclear spins. Therefore only the antisymmetric 
part, with respect to proton interchange, is retained in the interaction. In the physisorption 
regime, each proton being much closer to the molecule centre than to the surface electrons, 
the magnetic field difference is fairly well approximated by the field gradients. 

The dipotar processes W and D are considered in section 2. We give first a modem 
(condensed) version of Wigner's theory. It assumes a catalyst magnetic dipole located at 
the cation site* In the oxides considered here, when the orbital momentum is quenched, 
this arises from the total electron spin. Because of its simplicity, the Wigner process, 
denoted W, has been used by all experimentalists to interpret their data. Then, we enlarge 
the formalism to incorporate the orbital degrees of freedom of the catalyst electrons and 
obtain the D process, €or different possible ground states. Section 3 details the hyperfine 
contact processes. The simple contact of the d electron with the Hz proton is denoted 
by Y, while the overlap induced contact process is denoted by OY. Using the metal- 
molecule electron antisymmetrization dlows some intramolecular electron-proton contact. 
The different processes are then compared and discussed. Some concluding comments are 
given in section 4, whiie the details of the algebra and analytical calculations are reported 
in the appendices. 

2. The dipolar process 

The dipolar coupling, hereafter denoted D, arises from the antisymmetric part of the double 
dipoldipole interaction between the electron spins and the two nuclear spins I(a) and I @ )  
of the hydrogen protons a and b. The dipolar Hamiltonian can be written as 

where 1, = 1.571 x lon7 zu., $(a) is the spin momentum of electron U, i = I(a) - I(b) 
the molecule nuclear spin difference and Tk(r)  = Y k ( 8 ,  @)/rk", aa (respectiveIy ab) 
being the distance vector between the electron a! and the proton a (respectively b). In 
the following ab denotes the internuclear vector. (Tensors in the spherical basis are used 
throughout the paper [9].) By performing a Iimited series expansion around the molecule 
centre of mass, applying the gradient formula and using the recoupling properties of four 
angular momenta, the dipolar Hamiltonian (2.1) can be re-written in a simpler form 

where the nuclear tensor (denoted N for nucleus) 

(2.3) 
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pertains to the nuclear spin and rotational degrees of freedom, inducing the 0 - p  transitions 
with selection rules AI  = AL = I ,  whereas the electron tensor (denoted E for electron) 

E2 = C E 2 l a )  
U 

operates on the spin and position degrees of freedom (relative to the molecule centre) of 
the electron a, with the position tensor defined as T3 = Y3(r)/r4. 

The essentid assumption of Wigner considers the magnetic impurity as a point dipole, 
located in  heterogeneous conversion, on a surface site. In this approximation, the electron 
matrix elements are found to obey the following simple sum rule: 

The nuclear matrix elements are simply worked out, leading to 

Inserting (2.6) and (27) in (1.1)' the transition rate is written as 

The temperature factor, also denoted the Wigner constant 

contains the contributions from the electron spins, the molecular rotation and spin of the 
nuclei, as well as the temperature dependent spectral density of the thermal motion ai the 
surface. When d is expressed in &U,, the Wigner constant k is expressed in s-', For a 
cP+ impurity of spin s = $, k amounts to - 2 x 10a s-l when .I(w,) is taken, at  TOO^ 

temperature, to be of the order of the molecul+impurity contact time N s. The 
0-p rate is found to be proportional to p2/d8 ( p  represents here the impurity magnetic 
moment), which is referred in the literature as the Wigner law. (The original law was in 
fact derived in the gas phase, where Wigner related the interaction time f to the approach 
distance d through t = (d /3u) ,  U being the thermal velocity, which brings the rate E C6. 
This does not however apply to a catalyst surface.) We remark hat, in  this formaIism, 
the impurity magnetic moment arises solely from the total electron spin and the conversion 
rate becomes identical for different electron configurations. At room temperature, and at a 
distance d = 4.5 a.u, the conversion time to+p = (Po+p)-' is roughly of the order of 1 ms, 
while at liquid nitrogen temperature T+,,, 2 1 mn and at very low temperature q,-+,, 21 1 h. 

We take now into account the surface electrons' orbjtal degrees of freedom. The 
resulting conversion rate can be written in a form similar to (2.8): 
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where K”fr), being defined by (Bl), represents an effective average ( ~ - ~ } y  over the 
electron orbitals which span the representation r. In the case of a non-degenerate ground 
state r, it is shown in appendix 3 that K(r) has the form of a scalar product 

K D ( r )  = [&/7(~9)];17~(r). P ( r )  (2.1 I )  

of tensors T 3 ( r )  = E, T3(w) .  which sum the different tensorial matrix elements T3(0) = 
{w1T3]o}, over the orbitah U. For 4r = 4B1, o = .$, q, while for 4r = 4A2, w = U, e ,  
17. In terms of the 3d orbital angular momentum eigenstates 12, n}, and using the simplified 
notation ( RJ~Y;,I T,” I RsdYi}  = @‘la In) for the matrix elements, we obtain the conversion 
rates 

For the degenerate manifold 4E, (2.1 1) must be replaced by (B6) with ( y ,  y ‘ )  = ( e ,  q), 
introducing the nondiagonal elements {$lT31q) (qiT31[), and leading to the conversion 
rate 

(2.14) 

When the effect of the molecule4r electron overlap is included, the wavefunction U must 
be replaced by iVg,[u - g(a)(gju}] where N,, = [ I  - ( g 1 ~ ) ~ ] - * / ~ ,  and the matrix element 
(OlOlO) that appears in (2.13} and (2.14) is replaced by N&[{OlOlO} - 2{glO)(OlOlg}J. The 
explicit calculation of (OIOIg} shows that this matrix element remains very small except at 
very short distances, which would correspond to Ha chemisorption, for which our mode1 is 
not valid. We can therefore conclude that the dipolar processes are not directIy modified 
by metal-molecule non-orthogonality effects. (The chemisorption well minimum is located 
beIow 2 a.u. whereas the physisorption one is above 4 au.; in between is an energy barrier. 
In the physisorption regime, the metal-molecule electron overlap characterizes rather well 
the admixture of states since it corresponds roughly to the ratio of the metal-molecule 
eIectmn repulsion divided by the energy difference between the metal and moIecule e’tectron 
ground states. For small values of the overlap, say smaller than 0.3, a simple first-order 
orthogonalization procedure is thus sufficient to describe the admixture.) 

The relative efficiencies of the dipolar mechanism corresponding to the electron 
eigenstates 4r = *B,, 4A2 and 4E are compared to the Wigner one in figure 1, as a 
function of the distance d ,  for 2 = 4.8. We have plotted, in figure 2, the orbital averages 
PEp(4r)/P05p = {(r/d)-8)r, as a function of the nuclear charge Z, ford = 4.5 a.u. It is 
first apparent that for long surfacemolecule distances d, we recover the Wigner rate in &S. 

But at the usual distances of adsorption (d = 4.5 a.u.) many powers of d are operative, 
as well as exponential decreases, arising from the Cr orbitals. The most eficient dipolar 
channels are those which contain the dangling bond U: 4A2 and 4E. Among them, the 4Az 
channel is faster since it contains the orbitals ( 6 ,  q )  which point in planes perpendicular to 
the surface, whereas the 4E channel contains the in-plane orbital <, Finally the 4 B ~  channel, 
containing the orbitals c, q and < remains weaker. At d = 4.5 a.u. and 2 = 4.8, the 
4Az and 4E dipolar channels exceed the Wigner one by 41% and 21% respectively, while 
the 4B1 one is 63% smaller. It is therefore clear that the conversion efficiency increases 
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when the three-electron ground state contains orbitals with larger metal-molecule electron 
overlap. However, the analysis in terms of the orbitals' spatial extension, measured in our 
model by the parameter Z as represented in figure 2, is more complex. We must recall that 
the conversion process arises from the catalyst magnetic field gradients. When Z is smalI 
the orbitals are rather diffuse and the electron spread decreases these gradients. Therefore 
increasing values of 2 increase the surface field inhomogeneity anh the convenion rates. In 
contrast when Z is large, since the electrons are more concentrated around their nucleus, the 
electron probability amplitude at the moIecuIe decreases sharpIy with increasing values of Z. 
For large Z this intensity decrease overcomes the influence of the magnetic inhomogeneity 
for the channels 4A2 and 4E which contain the dangling bond U but not for the 4B1 one. The 
4A2 and 4E conversion rates pass thus through a maximum at Z = 5.8 and 5.3 respectively 
increasing the Wigner rate by about 60% and 30%. All rates converge towards the Wigner 
one for very large values of Z, as expected fur a point magnetic dipole. It is remarkable 
that the dipolar processes become almost vanishing for Z c 3, as seen in figure 2. 

3.1 O3 

2.1 o3 

1 . 1 0 ~  

0 I I I 

4 4.5 5 5.5 d 

2 . "  " I '  " 

! 
1 5  

5 

0.5 

0 
0 5 1 0  2 

Figure 1. The dipolar conversion rates PEp(r) (in 
s-'), corresponding to the channels 'r = E ( 4 B ~ ) ,  
A e A d  and R4E), are represented as a function of 
the Cr-molecule distance d (in au.), for 2 = 4.8, and 
compared to the Wlgner one Poyp. 

Figure 2. The orbital averages PE,(4r) /P&, = 
((r/d)-*)r, corresponding to the channels 4r = 
B(4B~ 1, ArA2) and E[4E), are represented as a function 
of the nuclear charge 2, ford = 4.5 au. 

We conclude that the Wigner assumption of a point dipole Ieads to only an average 
conversion rate for H2 molecules adsorbed on a transition metal oxide surface, The surface 
electronic configuration must therefore be analysed in detail to interpret the strength of the 
dipolar interactions with the adsorbed molecules. Before considering the contact processes, 
it is interesting to notice that when the electron eigenstate does not have the maximum spin 
multiplicity but has identical orbital basis, a different orbital form factor is found in the 
conversion rate. For instance, far ( e * b ~ ) ~ 3 1  we find 

where k is still given by (2.9) with S = 1/2. Although at long distances (2.15) converges 
towards the Wigner rate (2.81, at shorter distances it has a different structure from (2.8) and 
(2.1 2). 
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3. The contact processes 

The antisymmetric part (with respect to proton interchange) of the hyperhe contact coupting 
between the spins of the electrons and the nuclei leads to the Hamiltonian 

where aa (ab)  is the distance vector between the electron a and the proton a (b), s(a)  is 
the spin momentum of electmn a! and i = I @  - I&) the molecule nuclear spin difference. 
a(?-) represents the Dirac operator and A, = Ad(51~)'/~($)~/* = 3.39 x IO-7 &U. 

The calculation of the contact induced conversion probabiiity parallels the dipolar one, 
the major difference arising from the orbital operator. The usua1 first-order expansion of 
the D i m  operators, around the molecular centre M, gives 

ii(aa) - &(ab) = &a' - v ' s (c r~)  = -(2i/fi)ab' . S ~ C I M ) ~ '  (3.2) 

which introduces the momentum operator. Inserting this in (3.1), and restricting to a spin 
manifold S ,  which allows us to substitute sI(01) by S' = E, s'(a) multiplied by the ratio 
qs of their reduced matrix elements (for the states of maximum spin, here considered, qr is 
equal to the inverse of the number of d electrons): 

Recoupling the four momenta, the contact Hamiltonian (3.1) can be re-Written in simpler 
form 

where, as precedingly, we have disentangled the nuclear operator 

"h = (i' x a b l y  (3.5) 

inducing the n-p transitions, from the electron one 

It is shown in appendix B, that the + p  conversion rate, relative to the hypefie contact 
process Y, defined by (3.4)-(3.6), and induced by the catalyst electrons in a ""'f 
eigenstate, can be written in the condensed form similar to (2.8) and (2.10) 

P;,,(r) = k P ( r )  (3.7) 

where k denotes the Wigner constant (2.9). 

orbitals have again the form of a scalar product: 
In the case of a non-degenerate orbital ground state r, the contributions from the electron 

K Y r )  = [27/(33 x s ) ] ( ~ s ~ ) ~ f e ~ ( r )  . @(r)j (3.8) 
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where Q'(r) contains the sum, over the orbitals w which span r. of the operator 
( i / h )S (aM)p '  matrix elements and is simply expressed, in terms of one electron orbitals, 
as 

(3.9) 

where M denotes the position of the molecule centre, relative to the metal nucleus C. The 
orbitals w and their gradients are thus estimated at M: CM = d.  

In the case of a degenerate ground state r. the orbital contributions contain non-diagonal 
extra terms: 

where the three-electron matrix elements of the operator Q1 = C, S ( a M ) p ' .  denoted by 
Q ' ( y ,  y ' )  = (f. y/Q1lr ,  y ' ) ,  can be reduced to one-electron ones. 

However, these general formulae become much simpler in the particular geometry 
considered here. When the H2 molecule is assumed to be adsorbed at a distance d from the 
metal ion, on the symmetry axis perpendicular to the surface lattice plane, the amplitudes 
of the metal orbitals w = c,  v ,  < vanishing on this axis. the contact induced conversion 
cannot occur in the case of a 4BI ground state: K y ( 4 B ~ )  = 0. In the cases of the 4A2 

and 4E ground states, the orbital form factors become equal and the summation over the 
orbitals w in (3.9) and (3.10) is reduced to only one contribution arising from the dangling 
bond w = U .  The calculations, detailed in appendix B.2, lead to the following expression 
in terms of the parameters Z and d: 

K Y ( 4 A 2 )  = Ky(4E) = [29/(325 x 5)]Z14d6(Zd - 6)2exp(-$Zd). (3.11) 

We now study the effect of the moleculcCr electron overlap. The contact-induced 
conversion probability keeps the formal structure defined by (3.7). (3.8) and (3.10). but a 
new orbital operator must be defined by 

(3.12) 

where S,, = (glw) denote the different overlaps of the one-electron orbitals w,  which 
span r, with the molecular one g, and N,, = ( I  - S&,)'/2. Because of our first-order 
expansion, the catalyst electron orbitals and their gradients are both taken at the molecule 
centre, whereas g is taken at the proton, since g(a) = g(b). The amplitude of the molecular 
electron bonding orbital at the nuclear spins, is modulated by the molecule-catalyst electron 
overlaps. The wavefunction U being replaced by [u-g(a)(gJu)l[l - ( g l ~ ) ~ ] - ' / ~ ,  the resulting 
0-p conversion rates, relative to the overlap contact process OY in the 4Az channel, are 
obtained as 

(3.13) 

and similarly for the 4E ones. PA,(4A2) is given by (3.7) and (3.1 I ) .  As before. the overlap 
contact induced conversion cannot occur in the case of a 4BI ground state: K0Y(4B1) = 0. 
We have represented P:2p(4Az), and compared it with PL,(4A2) in figure 3 as a function 

OY 4 P,,+,A Az)/P,&(~Az) = [U - ~ ( a ) ( g l u ) l ~ / u ~ ( 4 [ l  - ( g l ~ ) ~ l  
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of distance d .  for Z = 4.8, and in figure 4 as a function of Z, for d = 4.5 a.u. The ratio 
(3.13) is represented as a function of Z, for d = 4.5 a.u., in figure 5.  It is apparent from 
these figures that the overlap contact process OY is much larger than the simple contact 
one Y, by about one order of magnitude. The direct contact process appears to be weaker 
than the dipolar ones, except for very small Z (2 -= 3) where the metal orbitals are rather 
diffuse. The overlap contact process becomes more efficient than the dipolar ones, for 
2 < 4.3. It is essentially dominated by the amplitude of the metal orbital at the molecule 
centre, as well as by the molecule-metal overlap. The importance of the surface electron 
distribution inhomogeneity is manifested through the increase of the ratio (3.13) with 2, 
whereas the Y and OY rates decrease with increasing Z. The amplitude strength thus 
overcomes the gradient strength more clearly in the contact processes than in the dipolar 
ones. In other words, the maximum that may appear in the dipolar rates appears in the 
contact ones, shifted towards much lower Z values. At Z = 3 the OY process becomes 
the most efficient one. Its rate exceeds that of the D process by a factor of - 13. We 
obtain a factor of four when comparing to the D rate maximum at Z = 5.8. Moreover 
the contact processes decrease more slowly than the dipolar ones, with increasing surface- 
molecule distance d. Because of the Cr-molecule electron overlap, the electrons cannot be 
distinguished and a Cr electron may reach an H proton through a molecular orbital. This 
mixing of the catalyst 3d electrons with the molecular ones shifts the range of the contact 
interaction to larger distances and thus strengthens the @ p  conversion rate [ IO] .  A similar 
overlap mechanism was considered in 1972 [ l l l ,  and found to be efficient in the analysis 
of chemical shifts in paramagnetic mixtures. 

i 1 1 0 '  

4 4 5  5 5.5 d 2 3 4 5 6 2  

Figure 3. The contact conversion rates Pzp(r) and 
P,ZD(r) (in s-'), corresponding to tk channels 4r = 
N 4 A i  or E('E). are represented as a function of the 
Cr-molecule dislance d (in au.), for Z = 4.8. 

Figure 4. The contact conversion rates p L n ( r )  and 
p,o,g(r) (in SKI), corresponding IO ule ch~lneis 4r = 
A(4A2) or W4E). me represented as a function of the 
nuclear charge 2 ,  Ford = 4.5 a.". 

Summarizing, we have shown for all the processes investigated that the conversion rate 
is very sensitive to the surface orbital basis which spans the many-electron ground state. In 
particular the presence of dangling bonds that point perpendicularly to the catalyst surface, 
and therefore have stronger electron overlaps with the molecules, strengthens the conversion 
rate. The maximum efficiency is obtained when some balance is reached between the two 
contradictory requirements of strong surface metal electron amplitudes and their gradients. 
The dipolar processes are found to be faster for large Z (Z > 4.3,  associated with localized 
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P"" PY 
, ~ .  . , ,  4 3 

d=4.5 i 
3 2  - 

24 

~ 5 
2 4 5 6 2  

Figure 5. The ratio of the contact convenion rates Pz",,(4r)/PT-,(4r), corresponding to 

the channels 'r = A('A2) or E(%). are represenled as a function of lhe nuclear charge Z ,  for 
d = 4.5 au. 

electrons and strong surface magnetic gradients. In contrast the contact processes become 
the faster ones for smaller Z (2 < 4). associated with delocalized electrons and strong 
electron amplitudes at the adsorbed molecules. These results show that 0-p conversion 
measurements might give important complementary information on the surface metal degree 
of ionicity and on the influence of surface pretreatments. 

4. Concluding comments 

The processes described above focus on one-step hyperfine interactions, where the H 
nuclear spins are under the direct influence of the surface electrons. The two-step 
mechanisms, where these hyperfine interactions are modulated by the surface molecule 
Coulomb interactions, as described briefly in [12], will be detailed in a forthcoming 
publication. By considering the electron orbital degrees of freedom we have obtained higher 
or lower conversion rate estimates than those obtained within Wigner's model. depending 
on the surface electron configuration symmetries and radial extensions. 

Our argument is rather simple. The different metal electrons occupy orbitals which are 
differently orientated in space. Consequently, the hyperfine interactions with an adsorbed 
Hz molecule are very sensitive to the orbital geometry. The orbital degrees of freedom 
of the surface electrons selectively modulate the c-p conversion rate and must therefore 
be considered. In particular the metal-molecule electron antisymmetrization introduces 
non-diagonal effects which are proportional to the electron overlap. We have considered 
here contact and dipolar interactions, and diagonal as well as non-diagonal effects, on a 
surface structure characterized by a transition metal ion surrounded by ligands of tetragonal 
symmetry. In the processes investigated we have merely concentrated on the surface- 
molecule distance and the effective metal ionic charge dependences. 

The distance dependences of the mechanisms depicted appear quite different from the 
simple ' d - R '  Wigner's law. The consideration of the surface electron distribution, in the 
dipolar interaction with the H nuclear spins. adds many other powers of d, as well as 
exponential decreases of comparable magnitudes. The dipolar mechanism is found to be 
only slightly affected by the electron overlap. In contrast. this overlap enhances the contact 
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mechanism by about one order of magnitude, making this process faster than the dipolar 
one when strong covalent bonds are established between the transition metal and the 0 ions, 
spreading the metal electrons. However in that case, our estimates must be modulated by the 
0 admixtures. A calculation including the respective influence of the 0 on the conversion 
rate is under consideration. In the case of ionic surfaces, the dipolar process, being of 
longer range, increases and becomes faster than the contact one. It must also be noticed 
that the overlap contact process is more sensitive to the orientation of the surface electron 
orbitals than the dipolar process. At room temperature for instance, the molecules being 
mobile along the surface, we are expecting a decrease of the axial contribution, whereas 
the electrons distributed along the vertical planes will overcome the axial decrease and 
enhance the contact processes. The decomposition of the conversion rate into different 
orbital contributions therefore becomes temperature dependent. 

The model chosen to represent the electron surface configuration is rather simplified. 
We have omitted configuration mixing, and spin-xbit interaction and taken into account the 
covalent bonds with the 0 ions in a crude fashion. Moreover the H2 adsorption kinetics are 
concentrated within a single spectral density. The corresponding estimates of the absolute 
conversion rates are therefore approximate. 

Much theoretical work remains to be done, in order to extract from conversion 
measurements useful information about electronic configurations on surfaces of metal oxides. 
Our formalism can easily be extended to a variety of geometrical symmetries and different 
n-electron couplings. Then the covalent mixing of the transition metal impurity with the 
0 ions should be described by more accurate wave functions, which take into account 
self-consistently the amplitudes of admixture and the respective spatial extensions. 

On the experimental side, low temperature measurements on clean surfaces are difficult 
presently because of low resolution. ‘0-p‘ conversion rates could however be measured 
down to 77 K. At these temperatures, the H2 molecules at the surface are continuously 
renewed and it is rather simple to analyse the gas sample composition. Despite the fact that 
surface-gas phase exchange and surface mobility can now be rather well modelled, we do 
not think that the fining of absolute conversion rates in terms of a significant number of 
parameters would be useful. Rather we think that the comparisons of 0 - p  rates performed 
with one kind of impurity dispersed on different substrates, or different impurities dispersed 
on the same substrate, would be much more meaningful. 

Summarizing, we have shown that the surface electrons’ orbital degrees of freedom play 
an important role in the H2 o-p conversion process. The Wigner model used up to now by 
all experimentalists and almost all theoreticians is found. in many cases, to be too weak, 
and at best very approximate. whenever applied to a realistic surface configuration. 
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Appendix A. Electron eigenstates 

Although the following model can easily be extended to a variety of ionic surfaces, we chose 
to illustrate the processes investigated on a particular surface configuration. We consider 
that the 0 ions form a square lattice, with a Cr ion at the centre. One 0 ion may lie below, 
or not, depending on the surface. 
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The free Cr d electron wavefunctions are taken as 12.11) = RMY;, where R,, = 
N&exp(-fZr), N3& = (23/39 x 5) ' / 2Z7 /2 .  Z denotes the effective nuclear charge of 
C?+ and can be estimated from 'Slater rules' as a difference between the atomic number 
Zo of the free ion minus a screening constant S [13]. If we retain only the shielding of 
the Cr inner shells, we obtain 2 = 5.3, but if we consider the additional shielding of the 
0 ligands as well as the attractions by the 0 nuclei, the effective Z probably lies between 
three and six. 

The symmetry group considered here is CA", and the decomposition of the representation 
D'. with I = 2, in terms of the CdV irreducible representations Dz + al + bl + bz + e ,  
allows us to label the obtained eigenstates. The axial one U = 12.0) spans the representation 
al .  The electrons, being distributed along the surface normal, avoid the 0 repulsion. For 
the doubly degenerate representation e, we use as the basis 6 = (i /df)[I2.  I )  + 12. - I ) ]  
and q = (-l/&)[l2, 1 )  - 12, - I ) ]  whose lobes point in perpendicular planes above and 
below the 0 ions. The third state < = ( - i / f i ) [ l2 ,2 )  - 12, -2)l spans the representation 
b2, in which the electrons are distributed in a plane parallel to the 0 ions but rotated 
by i x  to avoid them. The last state, U = ( l / f i ) [ l2 ,  2) + 12, -2)L has electron density 
above the 0 ions, a high energy, and has not been considered. The next step consists in 
building the three-electron states corresponding to the three 3d electrons of the C?' ion. We 
shall only consider spin quadruplets. Among the two possible ground states which contain 
the dangling bond U, (aleb2)4E has a twofold orbital degeneracy and four wavefunctions: 
l4E,6,m = :) = lu<cI. I 4 E , t , m  = $) = (l/&)[li<el + lu<sl +lu<6 l l . . .  and similarly 
for I4E, q) by replacing 6 by q, whereas for (ale2)4Az, I4Az, m = +) = l u e q l . .  .. When 
an 0 ion lies below the metal one, (eZbz)4B~ probably becomes the ground state. with 
wavefunctions I ~ B ~ . ~  = i )  = l ~ q < l . .  _ _  

(A recent calculation of the electronic structure of sapphire can be found in [ 141 and 
[ 1.51. Earlier studies are listed in references therein.) 

The last step incorporates the H electrons. The H2 molecule in its ground state IC, 
is represented by its wavefunction $('E,) = lggl where the Hartree-Fock orbital g is 
taken as g = c[exp(-hr,) + exp(-hrb)l, where A = 1.189 a.u., c = 0.399 [I61 and r, (rb) 
denotes the distance of the electron from proton a (b). Performing a spherical expansion 
of the function we shall retain, for numerical applications, the zero-order term of spherical 
symmetry since it contains about 98% of the total charge. The function g is then given by 

R = (c/h2br)([l + hlr - hllexp(-hlr - bl) - [ I  + h(r + h)]exp(-h(r + h ) ) )  (AI) 

where h = 0.7 represents half the intemuclear distance and r the electron distance from the 
molecule centre. The overlap integrals (wig) ,  where o = 6, q. <. U have been computed as 
a function of the Cr-molecule distance d and of the effective nuclear charge Z. The 
largest one ( u l g )  is rather important. It has its maximum value at d = 3 a.u. and 
Z = 2.2. However below Z = 3 this overlap oversteps 0.4, wich requires a different 
treatment of the molecule-ion electron admixture from that suggested in our model. We 
consider the five electrons as a whole in the surface-molecule complex and obtain their 
eigenstates in terms of antisymmetrized products. The molecule and C?+ ion are considered 
to be unperturbed in their electron configurations, on account of the weak physisorption, 
but the effect of antisymmetrization mixes the molecular and ionic characters. Since the 
molecule and Cr functions are not orthogonal it appears convenient to use, in the following 
calculations, as an intermediate the firs-order orthogonalized Cr eigenfunction. The 
compound eigenstate for instance luq<g$ is clearly invariant by replacing each w = U. 0. < 
by I L )  = [io) - Ig)(glo)l[t - I(glw)121-1'2. 
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Appendix B. Electron orbital and  spin momenta algebra 

8.1. The dipolar process 

The electron contribution to the dipolar process given by (2.10) 

1 3 3 1  

is calculated by reducing the three-electron matrix elements to one electron ones. 
transforming the summation over the electrons a in one over the orbitals o: 

where we define T3(o) = (olT310). with w being one of the orbitals building r. 
The spin contribution obeys the sum rule 

with IS]  = 2s + 1. By using the following recoupling of ClebschGordan coefficients: 

x C(33kl - f l  + v ,  f l  - u)C(ZkZIfl. 0) (B4) 

noticing the selection rule Cp C(2k21fl, 0) = 5&a,  and recoupling the electron position 
tensors Cp C(33kl6, -fl)TiT?p = [T3 x T']:, we obtain for a non-degenerate ground 
state 

KD(r)  = [4x/(7 x 9)]T3(r) ,T3(T)  (B5) 

where T 3 ( r )  = x , (w /T ' lo )  sums the different orbital contributions. For 4r = 481: 
w = e ,  q ,  (, while for 4r = 4A2, o = U. e 5  q. In the degenerate case, we obtain extra 
non-diagonal couplings 

K D ( r )  = ~ 4 ~ / ( 7  x ~)I [T~(I - ) .  ~ ~ ( r )  + TVy,  Y') . TW, Y ) I  (B6) 

where we have defined T ' ( y ,  y ' )  = (ylT31y') .  For = (aleb2)4E, this represents the 
coupling inside the doubly-degenerate representation e with (7, y')  = (6, q ) ,  while o runs 
over U. (e, q ) .  t. 
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8 .2 .  The contact processes 

8.2.1. Conversion algebra. 
of electron and nuclei matrix elements as 

The conversion rate can be condensed as a sum of products 

x ( p I ( N h  x N h ) o l p ) ( 2 S + i r ,  y , m l ( E h  x Eh)"12S+'r, y .  m ) .  

The nuclear matrix elements are simply worked out: 

( p l ( N h  x N h ) " l p )  = fab2(2h + 
whereas for the electron ones we obtain 

x ( S , m l ( S '  x S ' ) x i S , m ) .  (zs+lI.,yl(Q' x @')812s+1r, y ) .  (B9) 

The spin matrix elements, being summed over m, lead to the selection rule R = 0: 

In the case of a non-degenerate orbital ground state r, the conversion rate is simply 
expressed by 

( B l l )  P,,+,,(r) Y = :(h,q,ab/h)2S(S + I)J(o,)Q'(r). Q'(r) 
which can be written in the form (3.7), provided that we define K Y ( r )  by (3.8).  

8.2.2.  In order to estimate the contact induced transition 
probability (BI I ) ,  we calculate the scalar products V ' o  . V ' o ,  which can be expressed 
in terms of v' R3dYi . V' R d , 2 .  The gradient formula [9] can be written as 

The orbital form factor. 

V'RldYi = C qi(r)Y2im 
i=l,3 

where the vector spherical harmonics are defined by Yzm = [Y' x el];, e' being the unit 
tensor and the radial functions $I being defined by: 

q l ( r )  = &(d/dr + 3/r)R,d = ~ , ~ & ( 5 r  - +r2)exp(-iZr) 

*3(r) = -&(d/dr - 2/r)R,d = ~ 3 ~ , , & f ~ r ~ ) e x p ( - f ~ r ) .  

V ' R ~ ~ Y :  . V'R3dY: = C o ! ( i j k ) ~ ( 2 2 k i m n ) q ; ~ ~ ~ ~ + ,  

( ~ 1 3 )  

1 ~ 1 4 )  

( ~ 1 5 )  

After some spherical algebra we obtain 

i j k  
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where i and j are odd and equal to one or three and k is even and takes the values zem, 
two and four. We have defined the numerical coefficients 

where the large round and curly brackets denote respectively the 3 j  and 6 j  coupling 
coefficients. If we restrict ourselves now to m = n = 0, that is the axial orbital U ,  

and take the molecule at a distance d on the symmetry axis, then (B15)  and (B16) give 

V ' u ( M ) .  Vlu(M)  = (1/4n)[z/ZJll - &Jl3l2 (B17) 

where A4 denotes the molecule centre. Inserting (B13) and (B14) into (B17) ,  we obtain 

V ' u ( M )  . V ' u ( M )  = (2/3"n)Z7d2(Zd - 6)2exp(-:Zd). (B 18) 

Appendix C. Metal-molecule electron overlap and dipolar matrix elements 

We need to obtain matrix elements or the overlap integral with two centres: one at the 
centre of mass of the H2 molecule and the other at the metal ion. The shift of the origin 
and the recoupling of the angular momentum can be made straightforwardly in the Fourier 
space by using the expansion of the plane wave in terms of the spherical harmonics: 

m P 
exp(ik.  T )  = 4n x i P j p ( k r )  Y i ( k ) * Y i ( F )  

e=o m=-e 

where k and i. are the direction unit vectors associated with k and T respectively. Then 
we obtain the overlap integral as 

m 

( d m )  = - 3 2 z 3 & N , N 3 d Y ~ ( d ) *  1 d k k 2 f 3 d ( k ) f i , ( k ) j o ( k b ) j z ( k d ) .  (C2) 

where the Fourier transform of the radial part f l , ( k )  of the Is wavefunction of H2 and the 
radial part f3d(k) of the 3d wavefunction are given by 

with K = ;Z, A as defined above (Al )  and the following definition of q: 

q = [-(i/X)a/axr. 
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z=4 8 

. ~ ~ 

'3 5 1 83 1 5  d 

Figure Cl .  The matrix elements (mlOln).  defined in lhe text, arc represented as a function of 
the Cr-molecule distance d .  for Z = 4.8. 

Table C2. List of the coefficiens C, 

m L r C,(L.f) m L Y C,(L.~) 

0 0 3 I l3 'xS  2 0 3 1 /3 'xS  
2 5 2' x 513' x 7' 2 5 -22 x 5 /33  x 7 1  
2 3 2'13' x 5 x 7 2 3 -2'13' x 5 x 7  

4 7 2 X 5 / 3 X l l X 1 3  4 7 5 / 3 2 x 1 1 x 1 3  
4 5 2'11' x I3 4 5 2 ' j 3 x 1 2 x 1 3  
4 3 2 '15x1  v I 1  4 3 2 1 3 x 5 ~ 7 ~ 1 1  
4 I 2'13 x 5 Y 7' 4 I 2=13' x 5  x 7' 

2 1 215 x 7' 2 1 -215 Y 72 

1 0 3 l 1 3 2 x S  n d O 3  0 
2 5 2 ~ 5 1 3 '  x 7' 2 5 -2li2 5 l l 2 / 3 J l 2  x 7' 
2 3 2'13, Y 5 x 7 2 3 2,12/3Jl' x 5111 Y 1 

4 7 -2' x 5 / S 2  x I I  x 13 4 7 -2312 w p  11 13 

4 1 -24/32 x 5 x 7' 4 1 -2Jl2/,3l' 511' 72 

2 I I15 x 72 2 1 -2112/3'11 x S1I2 x 7' 

4 5 - 2 ' 1 3 ~ 7 ~  x 13 4 5 2'12 x S'1'/3'1' x l2 x 13 
4 3 - 2 3 1 3 ~ 5  xix 11 4 3 2312/33'2 x S'I2 x 7 x I I  

The dipole matrix elements (R3dYilT,'1RldY;) = (mluln) are also calculated along the 
same line. We shift the origin of coordinates for T,'. The general expression is given as 
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(mla In) = - (4n)’~& CiL+fY~-,_,- ,(&*~y(t.  3, L; m - n - a ,  a)cY(2 .  L, 2; n ,  m - n )  
L . I  

Here the radial part of the Fourier transform of T 3 ( r ) ,  denoted ‘T3(k) ,  is given by 

‘T3(k )  = ik/30n. (C7) 

The coupling constant Cy is given in terms of the Clebshaordan coefficients as 

cycel,e2,eim,,m2) =Jw,  + 1)(z2+ 1 ) / 4 ~ ( 2 t + i )  

x C ( ~ I ,  t 2 .  elml.mz)C(t,,e,,elO,O). 

Noticing that the spherical Bessel function j I ( x )  satisfies 

we obtain 

where U = ZK = $Z.  It is worthwhile noticing here that we obtain power law terms, not 
only the Wigner term but additional power terms, as well as exponential decreases. 

When the molecule is located on the axis of symmetry as assumed in the text, we have 
the selection rule 

After lengthy calculations for the differentiation in ((210). we obtain 

(mlolm) = A ~ - ~ ~ ~ C C , ( L , ~ ) F ( Z ;  ~ , t )  
L.f 

(1121 - 1 )  = Ad-4Z’CCnd(L. t )F(z;  L , t )  (Cl3) 
L . I  

where z = ud = - :Zd. The functions F and coefficients C are listed, for allowed values of 
L and e ,  in tables C1 and C2. In figure C1, we show (mlOlm) as a function of the distance 
d. 
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